In this study, we nowcast quarter-over-quarter US GDP growth rates between 2000Q2 and 2018Q4 using tree-based ensemble machine learning models, namely, bagged decision trees, random forests, and stochastic gradient tree boosting. For obtaining variables from our large-scale data set, we adopt a dynamic factor model. Our results show that tree-based ensemble models usually outperform linear dynamic factor models. Factors obtained from real variables appear to be more influential in machine learning models.